Abstract

We have previously shown that incubation for 1h with excess glucose or leucine causes insulin resistance in rat extensor digitorum longus (EDL) muscle by inhibiting AMP-activated protein kinase (AMPK). To examine the events that precede and follow these changes, studies were performed in rat EDL incubated with elevated levels of glucose or leucine for 30min-2h. Incubation in high glucose (25mM) or leucine (100μM) significantly diminished AMPK activity by 50% within 30min, with further decreases occurring at 1 and 2h. The initial decrease in activity at 30min coincided with a significant increase in muscle glycogen. The subsequent decreases at 1h were accompanied by phosphorylation of αAMPK at Ser485/491, and at 2h by decreased SIRT1 expression and increased PP2A activity, all of which have previously been shown to diminish AMPK activity. Glucose infusion in vivo, which caused several fold increases in plasma glucose and insulin, produced similar changes but with different timing. Thus, the initial decrease in AMPK activity observed at 3h was associated with changes in Ser485/491 phosphorylation and SIRT1 expression and increased PP2A activity was a later event. These findings suggest that both ex vivo and in vivo, multiple factors contribute to fuel-induced decreases in AMPK activity in skeletal muscle and the insulin resistance that accompanies it.

Highlights

  • It has long been appreciated that nutrient excess leads to insulin resistance in many tissues [1,2,3,4,5,6]

  • In a recent study [6], we compared the events associated with insulin resistance in rat extensor digitorum longus (EDL) muscles incubated with a high concentration of glucose (25 vs. 5.5mM) or a normal glucose concentration (5.5mM) with added leucine (100 or 200μM) for 1h

  • Time-course studies revealed that incubation of the EDL with 25 vs. 5.5mM glucose decreased the phosphorylation of AMPK at Thr172 by 40% at 30min, 50% at 60min, and 60% after 2h (Fig 1A)

Read more

Summary

Introduction

It has long been appreciated that nutrient excess leads to insulin resistance in many tissues [1,2,3,4,5,6]. In a recent study [6], we compared the events associated with insulin resistance in rat extensor digitorum longus (EDL) muscles incubated with a high concentration of glucose (25 vs 5.5mM) or a normal glucose concentration (5.5mM) with added leucine (100 or 200μM) for 1h. The results strongly suggested that elevated concentrations of glucose or leucine cause. Nutrient Excess and AMPK Inhibition in Muscle collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.