Abstract

Seeds of Plantago lanceolata were collected in a dune grassland ecosystem in the Netherlands. Plants were grown in a greenhouse for 61 days under either low or high nutrient conditions and were exposed to four different levels of biologically effective UV-B radiation. The highest UV-B exposure level simulated 30% reduction of the stratospheric ozone layer during summertime in the Netherlands. Total biomass production of plants at low nutrient supply was 50% lower compared to plants grown at high nutrient supply, while net photosynthesis was decreased by only 12%. Increased levels of UV-B reduced biomass production under non-limiting nutrient conditions only. Biomass production of plants grown at limited nutrient supply was not affected by UV-B. This response was correlated to increased accumulation of carbohydrates under nutrient limitation, which agrees well with the carbon/nutrient balance hypothesis. It is concluded that the increased accumulation of carbon in nutrient-stressed plants, may lead to a reduction of UV-B induced damage because of increased foliar UV-B absorbance by enhanced accumulation of phenolic compounds and leaf thickening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call