Abstract

BackgroundLong non-coding RNA (lncRNA) NUTM2A antisense RNA 1 (NUTM2A-AS1) has been reported to be abnormally up-regulated in pulpitis tissues. However, the function of NUTM2A-AS1 in pulpitis remains unclear. The aim of this study was to investigate the role and working mechanism of NUTM2A-AS1 in pulpitis using lipopolysaccharide (LPS)-treated human dental pulp cells (HDPCs). Methods3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and lactate dehydrogenase (LDH) release detection assay were conducted to analyze the viability of HDPCs. Cell inflammatory response was analyzed through measuring the protein levels of interleukin-6 (IL-6) and IL-8. Western blot assay and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to measure protein expression and RNA expression, respectively. Bioinformatic database StarBase was used to predict the possible targets of NUTM2A-AS1 and let-7c-5p, and dual-luciferase reporter assay was conducted to verify these intermolecular interactions. ResultsLPS stimulation restrained cell viability and induced cell apoptosis and inflammation of HDPCs. LPS exposure up-regulated the expression of NUTM2A-AS1 and High-Mobility Group Box 1 (HMGB1) and down-regulated the level of let-7c-5p. LPS-induced injury in HDPCs was partly attenuated by the silencing of NUTM2A-AS1 or HMGB1. Let-7c-5p was confirmed as a direct target of NUTM2A-AS1, and let-7c-5p bound to the 3′ untranslated region (3′UTR) of HMGB1 messenger RNA (mRNA) in HDPCs. HMGB1 overexpression largely overturned NUTM2A-AS1 silencing-mediated effects in LPS-induced HDPCs. ConclusionNUTM2A-AS1 knockdown attenuated LPS-induced damage in HDPCs partly through targeting let-7c-5p/HMGB1 axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.