Abstract
Nutlin-3 is a novel small-molecule antagonist of the human homolog of mouse double minute (MDM2) that binds MDM2 in the p53-binding pocket and activates the p53 signaling pathway. In this study, we show that nutlin-3 sensitizes Caki human renal cancer cells, but not normal human skin fibroblast (HSF) cells or human mesangial cells, to TRAIL-mediated apoptosis. Combined treatment with nutlin-3 and TRAIL markedly induces apoptosis in HCT116 cells (p53 wild type), but not in HCT116 p53-/- cells, suggesting that p53 is critical for the sensitizing effect of nutlin-3 on TRAIL-induced apoptosis. Pretreatment with N-acetylcysteine (NAC) significantly inhibited nutlin-3-induced DR5 upregulation and cell death induced by the combined treatment with nutlin-3 and TRAIL, suggesting that reactive oxygen species (ROS) mediate nutlin-3-induced DR5 upregulation, which contributes toward TRAIL-mediated apoptosis. However, the upregulation of the p53-mediated protein p53 upregulated modulator of apoptosis (PUMA) by nutlin-3 is likely to be ROS independent because antioxidants failed to block PUMA upregulation. Interestingly, a combined treatment with NAC and PUMA small interfering RNAs significantly blocks nutlin-3-induced and TRAIL-induced apoptosis. Therefore, the present study shows that nutlin-3 enhances TRAIL-induced apoptosis in human renal cancer cells by ROS-mediated or p53-mediated DR5 upregulation and p53-induced PUMA upregulation. These results may offer a novel therapeutic approach to TRAIL-based cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.