Abstract
Experimental results, measured on a dimpled test surface placed on one wall of a channel, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers ReH from 12,000 to 70,000. These data include friction factors, local Nusselt numbers, spatially-resolved local Nusselt numbers, and globally-averaged Nusselt numbers. The ratio of dimple depth to dimple print diameter δ/D is 0.3, and the ratio of channel height to dimple print diameter is 1.00. These results are compared to measurements from other investigations with different ratios of dimple depth to dimple print diameter δ/D to provide information on the influences of dimple depth. At all Reynolds numbers considered, local and spatially-resolved Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to: (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples, and just downstream of the downstream edges of the dimples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.