Abstract

The adaptive neural tracking control problem of a class of strict-feedback nonlinear systems with unknown control directions (UCD) and full-state constraints is investigated in this paper. The neural network (NN) is adopted to identify the totally unknown nonlinear functions. In the meanwhile, by resorting to the Nussbaum gain technique, the effects caused by the UCD and output dead zone are counteracted. Given physical limits and safety demands, a novel barrier Lyapunov function (BLF)-based adaptive neural control scheme is devised for the strict-feedback nonlinear systems to ensure that the constraints are not violated during operations. Besides, a rigorous theoretical analysis has been given to indicate that all of the closed-loop signals are bounded and the tracking error achieves asymptotic convergence performance. Finally, the effectiveness and flexibility of our proposed scheme are illustrated by two numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call