Abstract
Masonry vaults represent one of the typical structural typologies in historical masonry buildings. The study of the ultimate behavior of masonry vaults, together with the need to design adequate retrofitting techniques, is of high relevance in the optics of the preservation of the cultural heritage. In this paper, a new approach for the limit analysis of masonry construction is applied to FRP reinforced masonry vaults. This approach relies on the representation of geometry through NURBS surfaces, upper bound formulation of limit analysis, idealization of the structure as an assembly of rigid bodies with dissipation allowed only along interfaces, and optimization by means of a mesh adaptation scheme. The presence of FRP strips can be taken into account in easy way, because they can be included simply by adding NURBS surfaces and assigning them an adequate delamination stress value. The efficient mesh adaptation is performed by means of a Prey Predator Algorithm, which has been proven to be very suited for these problems. The strength of the proposed method lies in an accurate estimation of load-bearing capacity and collapse mechanism obtained with a model which requires a very low computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.