Abstract
An investigation into the postbuckling and geometrically nonlinear behaviors of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shells is carried out in this study. The discrete nonlinear equation system is established based on non-uniform rational B-Spline (NURBS) basis functions and the first-order shear deformation shell theory (FSDT). The nonlinearity of shells is formed in the Total Lagrangian approach considering the von Karman assumption. The incremental solutions are obtained by using a modified Riks method. In the present formulation, the rule of mixture is used to estimate the effective material properties of FG-CNTRC shells. Effects of CNTs distribution, volume fraction and CNTs orientation on the postbuckling behavior of FG-CNTRC shells are particularly investigated. Exact geometries of shells are modeled by using NURBS interpolation. Several verifications are given to show the high reliability of the proposed formulation. Especially, some complex postbuckling curves of FG-CNTRC panels and cylinders are first provided that could be useful for future references.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.