Abstract

Boundary representations (B-reps) using Non-Uniform Rational B-splines (NURBS) are the de facto standard used in CAD, but their utility in deep learning-based approaches is not well researched. We propose a differentiable NURBS module to integrate NURBS representations of CAD models with deep learning methods. We mathematically define the derivatives of the NURBS curves or surfaces with respect to the input parameters (control points, weights, and the knot vector). These derivatives are used to define an approximate Jacobian used for performing the “backward” evaluation to train the deep learning models. We have implemented our NURBS module using GPU-accelerated algorithms and integrated it with PyTorch, a popular deep learning framework. We demonstrate the efficacy of our NURBS module in performing CAD operations such as curve or surface fitting and surface offsetting. Further, we show its utility in deep learning for unsupervised point cloud reconstruction and enforce analysis constraints. These examples show that our module performs better for certain deep learning frameworks and can be directly integrated with any deep-learning framework requiring NURBS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.