Abstract

Human and nonhuman animals have a remarkable capacity to rapidly estimate the quantity of objects in the environment. The dominant view of this ability posits an abstract numerosity code, uncontaminated by nonnumerical visual information. The present study provides novel evidence in contradiction to this view by demonstrating that number and cumulative surface area are perceived holistically, classically known as integral dimensions. Whether assessed explicitly (Experiment 1) or implicitly (Experiment 2), perceived similarity for dot arrays that varied parametrically in number and cumulative area was best modeled by Euclidean, as opposed to city-block, distance within the stimulus space, comparable to other integral dimensions (brightness/saturation and radial frequency components) but different from separable dimensions (shape/color and brightness/size). Moreover, Euclidean distance remained the best-performing model, even when compared to models that controlled for other magnitude properties (e.g., density) or image similarity. These findings suggest that numerosity perception entails the obligatory processing of nonnumerical magnitude. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.