Abstract

Supersonic biplanes can achieve low-boom and low-drag supersonic flights. In the present study, aerodynamic analysis of a two-dimensional stagger Bussmann biplane (staggered upper element by 0.5c) at zero degrees angle of attack with trailing edge flap was investigated with the help of computational fluid dynamics (CFD) tools. Due to the wave cancellation effect, the Busemann biplane delivers a positive drag reduction at design supersonic Mach values. However, when operating outside of its intended parameters, it performs worse, and the wave cancellation effect has no beneficial effects on reducing drag. Another issue with the Busemann biplane is flow chocking, which produces a potent bow shock wave in front of the aircraft. This paper attempts to address low aerodynamics efficiency problems during take-off through numerical simulation of a staggered Busemann biplane with trailing edge flaps at zero degrees angle of attack. It was confirmed that the staggered biplane airfoil with flap has better aerodynamic performance during take-off at lower subsonic free stream Mach numbers. In 2D wings, the effect of flow chocking and hysteresis as starting problems, which arise when the biplanes accelerate from low Mach numbers, is reduced by using the suitable dimension and angle of rotation of the flap, and the flap is effective in settling these issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call