Abstract
Recently, a hypothesis on the complexity growth of unitarily evolving operators was presented. This hypothesis states that in generic, nonintegrable many-body systems, the so-called Lanczos coefficients associated with an autocorrelation function grow asymptotically linear, with a logarithmic correction in one-dimensional systems. In contrast, the growth is expected to be slower in integrable or free models. In this paper, we numerically test this hypothesis for a variety of exemplary systems, including one-dimensional and two-dimensional Ising models as well as one-dimensional Heisenberg models. While we find the hypothesis to be practically fulfilled for all considered Ising models, the onset of the hypothesized universal behavior could not be observed in the attainable numerical data for the Heisenberg model. The proposed linear bound on operator growth associated with the hypothesis eventually stems from geometric arguments involving the locality of the Hamiltonian as well as the lattice configuration. We derive and investigate a related geometric bound, and we find that while the bound itself is not sharply achieved for any considered model, the hypothesis is nonetheless fulfilled in most cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.