Abstract
We study the interplay of interactions and topology in a pseudo-spin Weyl system, obtained from a minimally modified Hubbard model, using the numerically exact auxiliary-field quantum Monte Carlo method complemented by mean-field theory. We find that the pseudo-spin plays a key role in the pairing mechanism, and its effect is reflected in the structure of the pairing amplitude. An attractive on-site interaction leads to pairing between quasiparticles carrying opposite spin and opposite topological charge, resulting in the formation of real-spin singlet pairs that are a mixture of pseudo-spin singlet and pseudo-spin triplet. Our results provide a detailed characterization of the exotic pairing behavior in this system, and represent an important step towards a more complete understanding of superconductivity in the context of topological band structures, which will help guide searches for topological superconductivity in real materials and ultracold atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.