Abstract
This article proposes a numerically efficient approach for computing the maximal (or minimal) impact one agent has on the cooperative system it belongs to. For example, if one is able to disturb/bolster merely one agent in order to maximally disturb/bolster the entire team, which agent to choose? We quantify the agent-to-system impact in terms of H∞ norm whereas output synchronization is taken as the underlying cooperative control scheme. The agent dynamics are homogeneous, second order and linear whilst communication graphs are weighted and undirected. We devise simple sufficient conditions on agent dynamics, topology and output synchronization parameters rendering all agent-to-system H∞ norms to attain their maxima in the origin (that is, when constant disturbances are applied). Essentially, we quickly identify bottlenecks and weak/strong spots in multi-agent systems without resorting to intense computations, which becomes even more important as the number of agents grows. Our analyses also provide directions towards improving communication graph design and tuning/selecting cooperative control mechanisms. Lastly, numerical examples with a large number of agents and experimental verification employing off-the-shelf nano quadrotors are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.