Abstract

The aim of this paper is the derivation of an a-posteriori error estimate for the numerical method based on an exponential scheme in time and spectral Galerkin methods in space. We obtain analytically a rigorous bound on the conditional mean square error, which is conditioned to the given realization of the data calculated by a numerical method. This bound is explicitly computable and uses only the computed numerical approximation. Thus one can check a-posteriori the error for a given numerical computation for a fixed discretization without relying on an asymptotic result. All estimates are only based on the numerical data and the structure of the equation, but they do not use any a-priori information of the solution, which makes the approach applicable to equations where global existence and uniqueness of solutions is not known. For simplicity of presentation, we develop the method here in a relatively simple situation of a stable one-dimensional Allen-Cahn equation with additive forcing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.