Abstract

Stiffened shells in launch vehicles are very sensitive to various forms of imperfections. In this study, the imperfection sensitivity of a 4.5mdiam isogrid stiffened shell under axial compression is investigated. The measured imperfection, NASA SP-8007 and several types of assumed imperfections, including eigenmode-shape imperfection and dimple-shape imperfections (produced by the single perturbation load approach (SPLA) and worst multiple perturbation load approach (WMPLA)), are introduced into FE model to predict the knockdown factors (KDFs), respectively. Then, the buckling test of this full-scale stiffened shell under axial compression is carried out to validate the above numerical approaches. It can be found that the KDF predicted by the WMPLA is very close to the test results, while the ones predicted by eigenmode-shape imperfection and NASA SP-8007 are extremely conservative. Besides, the measured imperfection and other assumed imperfections are proven to be risky, because these methods overestimate the actual load-carrying capacity. Finally, it can be concluded that the WMPLA is a potential and efficient approach to predict KDFs in the design stages for future launch vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.