Abstract

The use of deductive techniques, such as theorem provers, has several advantages in safety verification of hybrid systems. There is often a gap, however, between the type of assistance that a theorem prover requires to make progress on a proof task and the assistance that a system designer is able to provide. To address this deficiency we present an extension to the deductive verification framework of differential dynamic logic that allows the theorem prover KeYmaera to locally reason about behaviors by leveraging forward invariant sets provided by external methods, such as numerical techniques and designer insights. Our key contribution is a new inference rule, the forward invariant cut rule, introduced into the proof calculus of KeYmaera. We demonstrate the cut rule in action on an example involving an automotive powertrain control systems, in which we make use of a simulation-driven numerical technique to compute a local barrier function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.