Abstract

We propose a globally convergent numerical method, called the convexification, to numerically compute the viscosity solution to first-order Hamilton-Jacobi equations through the vanishing viscosity process where the viscosity parameter is a fixed small number. By convexification, we mean that we employ a suitable Carleman weight function to convexify the cost functional defined directly from the form of the Hamilton-Jacobi equation under consideration. The strict convexity of this functional is rigorously proved using a new Carleman estimate. We also prove that the unique minimizer of this strictly convex functional can be reached by the gradient descent method. Moreover, we show that the minimizer well approximates the viscosity solution of the Hamilton-Jacobi equation as the noise contained in the boundary data tends to zero. Some interesting numerical illustrations are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.