Abstract
A numerical approach for the aeroelastical stability of an over-expanded rocket engine is proposed in this paper. The main idea is to offer a better understanding of the repercussions likely to appear from the aeroelastic coupling in terms of side loads that may be responsible for damage effects on the engine. After a brief description of the stability model issued from previous works (Pekkari's team) and details upon a numerical fluid–structure coupling code, comparative calculations are conducted. The stability model is then called into question and a finer analysis is proposed to explain its major tendency to over-predict the aeroelastic frequency shift in comparison with numerical coupling results. Copyright © 2005 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.