Abstract

The present work is dedicated to development of a crack equivalent data reduction scheme applied to the load jig previously developed by Fernlund and Spelt [1] in order to characterize fracture of bonded joints under mixed-mode I+II loading. The jig allows for easy alteration of the mode-mixity and permits covering the full range of mixed-mode I+II combinations. A data reduction scheme based on specimen compliance, beam theory and crack equivalent concept is proposed to overcome several difficulties inherent to the test analysis. The method assumes that the performed test can be viewed as a combination of the double cantilever beam and asymmetrically loaded end-notched flexure tests, which provide modes I and II fracture characterization, respectively. A numerical analysis including a cohesive mixed-mode I+II damage model was performed considering different mixed-mode loading conditions to validate the proposed data reduction scheme. Issues regarding self-similar crack growth and fracture process zone development are discussed. It was verified that the considered in-plane mix mode fracture criterion is well captured using the proposed data reduction scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.