Abstract

The advancement of nanofluid innovation is a crucial area of research for physicists, mathematicians, manufacturers, and materials scientists. In engineering and industries, the fluid velocity caused by stretching sheets and nanofluids has a lot of applications such as refrigerators, chips, heat exchangers, hybrid mechanical motors, food development, and so on. The originality of the current study is the analysis of the thermal nanofluid in the existence of a porous matrix, and buoyancy force over the stretched sheet, so in limiting cases, the existing work is equated with the available effort, and excellent correspondence is originated. The governing equations in terms of PDEs are changed to the convection differential by utilizing the appropriate transformation and then solved by the ND-solved method along with bvph2. The thermal boundary layer thickness upsurges as the radiation and temperature factors are improved. It is observed that with the growing amount of volume fraction factor the velocity profile declines. When the velocity slip factors and permeability are enhanced the velocity profile augments. It is examined as the values of permeability factor, Biot number, and velocity slip factor are increased the inner temperature of the fluid improves. For the increasing values of θ_r, ϕ, and Nr, the temperature is increasing. In the future, the present model can be extended by using the hybrid nanofluid for the activation of thermal conductivity and heat enhancement analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call