Abstract

A high-resolution compact discretization scheme for the numerical approximation of two-point nonlinear fractal boundary value problems is presented to study the stationary anomalous diffusion process. Hausdorff derivative is applied to derive the models in fractal media. The proposed scheme solves the nonlinear fractal model and achieves an accuracy of order four by employing only three mesh points in a stencil and consumes short computing time. Numerical simulations with heat conduction in polar bear, convection–diffusion, boundary layer, Bessel’s and Burgers equation in a fractal medium are carried out to illustrate the utility of the scheme and their numerical rate of convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.