Abstract

Blasius problem is the simplest nonlinear boundary-layer problem. We hope that any approach developed for this epitome can be extended to more difficult hydrodynamics problems. With this motivation we review the so called Töpfer transformation, which allows us to find a non-iterative numerical solution of the Blasius problem by solving a related initial value problem and applying a scaling transformation. The applicability of a non-iterative transformation method to the Blasius problem is a consequence of its partial invariance with respect to a scaling group. Several problems in boundary-layer theory lack this kind of invariance and cannot be solved by non-iterative transformation methods. To overcome this drawback, we can modify the problem under study by introducing a numerical parameter, and require the invariance of the modified problem with respect to an extended scaling group involving this parameter. Then we apply initial value methods to the most recent developments involving variants and extensions of the Blasius problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.