Abstract
A three– dimensional, time dependent free surface model has been developed for predicting circulation and surface height variations in a tidal bay. An explicit finite difference numerical solution is obtained by transforming the vertical coordinate in the governing model equations. The transformed geometry consists of a fixed, flat free surface and a constant depth basin for easy computation. The ocean–bay interface open boundary condition is incorporated into this hydrodynamic model without approximation, and yields rather accurate results for the bay circulation and tide level variations. The numerical method employs a staggered grid Richardson lattice, which has the inherent property of not requiring calculation of the tangential velocity components on solid surfaces. The momentum equations ignore horizontal diffusion which is small for the South Biscayne Bay, for which vertical diffusion and advection dominate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.