Abstract
This research investigates a thermo-mechanical strength of three geometrical shape designs of an internal combustion (IC) engine piston by a finite element analysis (FEA). FEA was performed using Solidworks software for modelling geometrical piston designs, and the models were imported into ANSYS software for thermo-mechanical fatigue simulation. The work focused on predicting high stress intensity and indicated the fatigue critical regions and life of the piston shape design. AL7075-T6 aluminium alloy was used as a piston material and thermo-mechanical fatigue simulation was conducted based on the experimental stress-number of cycles recorded data from literature. Analytical results showed the similarity of the critical failure positions to some real failures in the IC engine piston, and the shape design modification of the piston. Hence, this concept can be used to satisfy the IC engine design needs at low cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.