Abstract

The concept of conformal field theory provides a general classification of statistical systems on two-dimensional geometries at the point of a continuous phase transition. Considering the finite-size scaling of certain special observables, one thus obtains not only the critical exponents but even the corresponding amplitudes of the divergences analytically. A first numerical analysis brought up the question whether analogous results can be obtained for those systems on three-dimensional manifolds. Using Monte Carlo simulations based on the Wolff single-cluster update algorithm we investigate the scaling properties of O(n) symmetric classical spin models on a three-dimensional, hyper-cylindrical geometry with a toroidal cross-section considering both periodic and antiperiodic boundary conditions. Studying the correlation lengths of the Ising, the XY, and the Heisenberg model, we find strong evidence for a scaling relation analogous to the two-dimensional case, but in contrast here for the systems with antiperiodic boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.