Abstract

This paper presents a new numerical method for computation of solutions of prototypical equations of isotachophoresis. Numerical computation is complicated because the Poisson equation, which relates electrostatic potential to space charge density, contains a small parameter. This parameter is usually assumed to have the value of zero. Under this assumption the Poisson differential equation is replaced by an algebraic equation, which is often called the equation of electroneutrality, because it indeed states that the electrolyte is electrically neutral this assumption were not studied in the past. Here we propose an iterative procedure which allows for computation of solutions without the assumption of electroneutrality. The accuracy is controlled by a number of iterations and is limited by a computer round-off error only. The method is based on our previously published theory of existence and uniqueness of solutions of isotachophoretic equations. Details of the computational algorithm for prototypical equations of isotachophoresis are given. A numerical example and comparison with previously published data are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.