Abstract

The safety of high-speed trains is considerably compromised by increasing speed trends. Thus, braking plate technology has been applied to high-speed trains. The purpose of this study is to clarify the evolution law of the flow field of the vehicle during the opening of the braking plate and analyze the influence of the plate movement on the aerodynamic performance of the train. In this study, the flow field was computed using incompressible Navier–Stokes equations and the shear-stress transport (SST) k–ω turbulence model, and the unsteady flow over the opening brake plates was simulated using moving overlapping grids and dual time-stepping. The numerical method was verified through comparison with wind tunnel data (error <8%). The results reveal that the upstream braking plate significantly decreases the aerodynamic forces of the downstream plate during opening of the plates and causes the aerodynamic drag of the downstream braking plate to fluctuate significantly when it increases. The operation of the braking plate produces a small increase in the drag force of the train body (2.6%), but it significantly decreases the lift force of the train body (by up to 94%), especially during the opening of the braking plates. The flow field in the upper part of the train is significantly changed by the opening of the braking plate. In particular, the pressure in the cavity of the braking device changes sharply, and the surface is subjected to a large pulse pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.