Abstract
AbstractA multiplanar tubular joint is the most common tubular joint type of jacket offshore platforms. Nevertheless, previous studies subjected to this topic were relatively limited. The chosen tubular joint analyzed in this paper is obtained from an existing minimum jacket platform and numerically analyzed by using FE model. This research has the objective to obtain stress distribution along the brace-chord intersection lines of a two-planar DKDT welded tubular joint under three modes of axial loading: tension, compression, and combination of both. The stress distribution will be evaluated at the weld toe of both on the chord and the brace sides. The result shows that stresses occurred on the chord side are greater than on the brace side. Though the stress distribution trend for both side of the weld toe is close to similar, there are several shifting on the exact location. Hotspot stress from the tension axial loading case has the greatest value followed by compression axial loading and combined axial loading cases.KeywordsDKDT multiplanar tubular jointFinite element analysisLocal stress distribution
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.