Abstract

This paper reports a numerical study on the aeroacoustic response of a rectangular T-junction with bias flow in the side-branch. The primary motivation of the present work is to study and explain the in recent experiments observed high sound amplification at small bias flows. The study is conducted by performing numerical simulation, which solves the 2D compressible linearized Navier-Stokes equations (LNSEs) in the frequency domain. The time averaged flow is first solved by using RANS along with a k-e turbulence model. The overall agreement with the experimental acoustic 3-port scattering data is good. It is found that the base flow changes significantly with the presence of a small bias flow. Compared to the case with no bias flow, a strong shear layer is created along the downstream main duct by the mixed grazing-bias flow. For small bias flows (Mach-number < 0.02) this shear layers extends far downstream of the actual junction. This creates a region of vortex-sound interaction much larger than for the no bias flow case, which is the main explanation behind the large amplification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.