Abstract

Abstract Considering the slip boundary condition, the rotating electro-osmotic flow of a third grade fluid in a channel formed by two parallel plates is investigated in the present study. The charge distribution is treated with the Debye–Hückel approximation analytically. Based on the finite difference method, the velocity profile for rotating electro-osmotic flow of third grade fluid is obtained numerically. It is shown that the non-Newtonian parameter of third grade fluid and the velocity slip factor play the important roles for the rotating electro-osmotic flow. The increasing non-Newtonian parameter slows down the flow and decreases the velocity magnitude, and the increasing slip parameter β has the similar influence on the velocity profile. Furthermore, the effect of the inclusion of third grade on the velocity profile is more conspicuous in the area near the walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call