Abstract

Abstract Large amounts of tropical precipitation have been observed as significantly concentrated over the western coast of Sumatra Island. In the present study, we used a cloud-resolving model to perform 14-day numerical simulations and reproduce the distinctive precipitation distributions over western Sumatra Island and adjacent areas. The control experiment, in which the warmer sea surface temperature (SST) near the coast was incorporated and the terminal velocity and effective radius of ice clouds were parameterized to be temperature dependent, adequately reproduced the precipitation concentration as well as the diurnal cycles of precipitation. We then used the column-integrated frozen moist static energy budget equation, which is virtually equivalent to the column-integrated moisture budget equation under the weak temperature gradient assumption, to formulate sensitivity experiments focusing on the effects of coastal SST and upper-level ice clouds. Analysis of the time-averaged fields revealed that the column-integrated moisture and precipitation in the coast were significantly reduced when a cooler coastal SST or larger ice cloud particle size was assumed. Based on the comparison of the sensitivity experiments and in situ observations, we speculate that ice clouds, which are exported from inland convection that is strictly regulated by solar radiation, promote the accumulation of moisture in the coastal region by mitigating radiative cooling. Together with the moisture and heat supplied by the warm ocean surface, they contribute to the large amounts of precipitation here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.