Abstract
Pore-scale flow simulations were conducted to investigate the permeability tensor of anisotropic porous media constructed using the Voronoi tessellation method. This construction method enabled the introduction of anisotropy to the media at the particle level in a random and yet controllable way. Simulations were carried out for media with different degrees of anisotropy through varying the mean aspect ratio of grain particles. The simulation results were then analyzed using the Kozeny-Carman (KC) model. The KC model describes the permeability of the anisotropic media in a tensor form with the anisotropy represented by different tortuosities along the three principal directions. The tortuosity tensor was found to be a complex function of the particle morphology, which is yet to be fully determined. However, the results presented have established the starting point for further theoretical development to formulate such a function and to build closed-form analytical permeability models for anisotropic porous media based on first principles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.