Abstract

In a liquid injection heat pump, it is very essential to control the compressor discharge temperature without wet-compression problems at extreme outdoor conditions. The objective of this study was to optimize the injection-hole geometries of a liquid injection heat pump in order to prevent the risk of wet-compression while reducing compressor discharge temperature at overload cooling conditions. In this study, a simulation model for predicting the performance of a liquid injection heat pump was developed and validated. The optimum injection-hole geometries were determined to obtain the maximum multiplication ratio, which led to a lower instant injection mass flow rate in terms of R- and θ-directional positions. In addition, the injection-hole diameter was minimized to prevent wet-compression while obtaining the target injection mass flow rate. The discharge temperature of the optimized compressor was decreased by 9.2°C over the baseline compressor while maintaining the same risk for wet-compression at the overload cooling test condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.