Abstract

Re-ignited partially premixed flame (PPF) is a quite extensive flame type in real applications, which is directly relevant to the local and global extinction and re-ignition phenomenon. The authors designed a model burner to establish laminar re-ignited PPFs. Numerical simulations were carried out to reveal the morphology of laminar re-ignited PPF. Based on the distributions of temperature, heat release and radicals, the morphologies of re-ignited flames were explored. W-shaped flames were formed under pilot-lean conditions. Line-shaped and y-shaped flames were formed under pilot-rich conditions. Both w-shaped and y-shaped flames had a triple-flame structure. The re-ignited flames can stand beyond the rich flammability limit. Additionally, OH distributions indicated both pilot flame and re-ignited flame well as it rapidly increased near the flame front. OH concentration did not increase visibly while CH2O concentration mildly increased during the mild re-ignition process in the pre-zone of the re-ignited PPF. According to the results of 0-D simulations using closed homogeneous reactor, both OH and CH2O reduced ignition time significantly. The results of this work are helpful for understanding re-ignited PPF more closely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call