Abstract

A finite element (FE) model is developed to investigate mode I delamination toughness of z-pin reinforced composite laminates. The z-pin pullout process is simulated by the deformation of a set of non-linear springs. A critical crack opening displacement (COD) criterion is used to simulate crack growth in a double-cantilever-beam (DCB) made of z-pinned laminates. The toughness of the structure is quantified by the energy release rate, which is calculated using the contour integral method. The FE model is verified for both unpinned and z-pinned laminates. Predicted loading forces from FE analysis are compared to available test data. Good agreement is achieved. Our numerical results indicate that z-pins can greatly increase the mode I delamination toughness of the composite laminates. The influence of design parameters on the toughness enhancement of z-pinned laminates is also investigated, which provides important information to optimise and improve the z-pinning technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.