Abstract

This work investigated chainlike magnetic nanoparticles (CMNPs), which are a type of magnetic nanoparticle (MNP) with a dipole–dipole interaction in which individual nanoparticles are connected to form a chainlike structure. We numerically analyzed the ac magnetization characteristics of the CMNP and the single-core MNP (SMNP) using the Landau–Lifshitz–Gilbert equation. Owing to the magnetic dipole–dipole interaction, the magnetization of the CMNP is approximately 10 times that of the SMNP under a certain excitation field. MNPs with a chainlike structure are thus expected to have enhanced magnetization characteristics and better performance in medical applications. Additionally, it was found that stronger magnetization can be expected from a CMNP connecting 10 or more magnetic cores with a size of approximately 10–12 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.