Abstract

The direct simulation Monte Carlo method is employed to predict the etch rate distribution on Al wafer for a chlorine feed gas flow. The etching process of an Al wafer in a plasma etch reactor is examined by simulating molecular collisions of reactant and product. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3Cl2+2Al → 2AlCl3. The gas flow inside the reactor is compared for six different nozzle locations. The present numerical results show that the etch rate increases with the mass flow rate of source gas Cl2. It is also shown that the flow field inside the reactor is significantly affected by the nozzle locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.