Abstract

In the present study, a three-dimensional computational fluid dynamics (CFD) simulation is carried out to investigate the gas-solid fluidization behavior and heat transfer characteristics in a rotating solid-bed with static geometry (RFB-SG) without slits. With a static geometry adit as the research objective, this paper makes use of the Eulerian–Eulerian approach to carry out numerical simulations in ANSYS FLUENT 14.5 software. The prediction of particle fluidization capacity and its behavior in the developed reactor has been analyzed, using appropriate parameters and simulation analysis. The results illustrated that the main factors, such as air inlet velocity, inlet pressure, temperature, and heat transfer coefficient, affected the reactor capacity. It is observed that for a solid inventory of 300 g, a well-stabled solid-bed has been obtained at an air velocity of 22 m s−1. On enhancing the inlet air velocity up to 33 m s-1, not only the fluidization capacity of the reactor is increased by 500 g but also the drying efficiency is found to be increased. On validating numerical results with experimental findings, the maximum error of temperature is found to be 6.98%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.