Abstract

The radioactive pollutant could migrate to the downstream urban area under the action of atmospheric dispersion due to the turbulent mixing under actual pollution accidents. A scenario in which radioactive contaminants from the upstream (for example, a nearshore nuclear power plant accident) migrates to the downstream urban blocks have been considered in this study. Numerical simulations using computational fluid dynamics (CFD) are then conducted to investigate the effects of the urban morphology (building packing density and layout) on the atmospheric dispersion of radioactive pollutants in this scenario. The building packing density and structure can significantly affect urban areas' mean flow pattern and the turbulent kinetic energy (TKE). The flow pattern and the TKE distribution influence the radioactive pollution dispersion. It is found that the radioactive pollution at the urban canyons is significantly affected by the vertical transport at the canyon. A comparison of the distributions of radioactive and traditional non-radioactive pollutants is also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call