Abstract

The numerical investigations on the structural performance of reinforced concrete (RC) beam strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) sheets are presented. The nonlinear characteristics of materials (i.e., stress-strain relationships of steel reinforcement, concrete, CFRP, and CFRP/concrete bond stress-slip behavior) were adopted in three-dimensional finite element (FE) models. The validation of FE models was conducted by comparing the laboratory works carried out on two RC beam specimens with 2000 mm length, 300 mm height, and 120 mm width. The numerical results show a good correlation with the experimental results of the beam specimens, such as load-displacement curves, crack patterns, and failure modes. They allow confirming the capability of the developed FE model to predict the flexural performance of strengthened beams considering CFRP/concrete interfacial behavior. Furthermore, parametric investigations were performed to determine the effect of flexural strengthening schemes, CFRP length with or without U-wraps, and multiple CFRP layers on the flexural performance of strengthened beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.