Abstract

The flow behavior of binary-sized particles in a horizontal rotating cylinder drum (RCD) and rotating ellipsoidal drum (RED) based on the discrete element method (DEM) is predicted. The simulations in this work study the influence of flattening on the flow of binary-sized particles. The flow characteristics such as the mixing indices, the resulting contact forces, the translational granular temperature, the configurational temperature and the energy dissipation are predicted or calculated in the simulations. The results show that the changes in flattening and particle diameter can affect the flow significantly. At a high rotating speed, the mixing degree of binary-sized particles in the RED can be improved. The resulting contact forces gradually increase with the increasing of rotating speed and flattening. The large particle's velocity is larger than that of the small one. The change of rotating angle causes the oscillation of translational granular temperature and configuration temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.