Abstract

Water wall tube temperature is a major parameter in the steam generator design which has a significant role in keeping the steam generator available. Thus, knowing the tube average temperature in different operating conditions is very important to avoid the causes of tube failures. High temperatures are a major cause of various types of failures, such as overheating, hydrogen damage, thermal stress, etc. Furthermore, deposits on the inner tube wall contribute to such failure by changing the thermal resistance of the tube wall, which causes a significant increase in the tube wall’s average temperature, consequently lowering the allowable stress. Therefore, the model was created by using ANSYS FLUENT (Canonsburg, PA, USA) to determine the wall average water tube wall temperature considering the deposit layer thickness (magnetite). Furthermore, this model was verified. It was found that increasing tube thickness can increase the average tube temperature but combining it with increasing deposit thickness leads to higher temperatures. In other words, the effect of the deposit on the tube with higher thickness is higher than on the tube with lower thickness. By discussing the minimum thickness of the water wall tube, the suitable selection of the tube thickness and courses of action concerning the operating conditions that minimize the potential overheating of water tubes in the furnace section of the boiler can be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.