Abstract
As a common enclosure structure, masonry walls are widely used in various types of buildings. However, due to the weak out-of-plane resistance of masonry walls and the generally brittle properties of the materials used for blocks, they are highly susceptible to collapse under blast loads and produce high-speed splash fragments, which seriously threatens the safety of personnel and equipment inside buildings. In this paper, based on the existing tests, a refined numerical simulation model was established to carry out numerical studies of clay tile walls and grouted CMU masonry infill walls under far-range blast loads, and the applicability of the finite element model and parameters were verified. Further, the effects of wall boundary configuration, constraints and dimensions on the dynamic response of the walls were carried out. The results show that: the load distribution on the wall is relatively uniform under the far-range explosion and can be considered as uniform load; the blast-resistant performance of the wall can be enhanced by increasing the grouting rate and the uniformity of grout hole distribution; the boundary configuration of the wall has little effect on the blast resistance, while the boundary constraints and the length and width are the main factors affecting the blast resistance of the wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.