Abstract

A negative pressure isolation room is built to accommodate and cure patients with highly infectious diseases. An absolutely airtight space effectively prevents infectious diseases from leaking out of the isolation room. Opening the door leads to a breakdown in isolation conditions and causes the dispersion of infectious air out of the isolation room. Extensively employed to manage smoke in cases of fires at subway and highway tunnels, a concept of controlling airflow is applied to the study. This study proposes a design of ventilation system to control air flow rate for containing airborne contaminant and preventing its spread to the adjacent rooms when the door to the isolation room is opened and closed. This paper employs computational fluid dynamics (CFD) as a more effective approach to examine the concentration maps of airborne contaminants and the airflow patterns of room air and discuss the influence of temperature differences between two rooms on airborne dispersion. Results show that an air velocity above 0.2 m/s via a doorway effectively prevents the spread of airborne contaminants out of the isolation room in the state of door opening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.