Abstract

The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The k– ε turbulence model was used for the gas phase flow while the Random-Trajectory model was applied to describe the behavior of the coal slurry particles. The unreacted-core shrinking model and modified Eddy break-up (EBU) model, were used to simulate the heterogeneous and homogeneous reactions, respectively. The simulation results obtained the detailed information about the flow field, temperature and species concentration distributions inside the gasifier. Meanwhile, the simulation results were compared with the experimental data as a function of O 2/coal ratio. It illustrated that the calculated carbon conversions agreed with the measured ones and that the measured quality of the syngas was better than the calculated one when the O 2/coal ratio increases. This result was related with the total heat loss through the gasifier and uncertain kinetics for the heterogeneous reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.