Abstract

Effects of the hydrogen/carbon mole ratio and pyrolysis gas pressure on the acetylene concentration in the hydrogen-carbon system in a plasma torch were numerically calculated by using the chemical thermodynamic equilibrium method of Gibbs free energy. The calculated results indicate that the hydrogen concentration and the pyrolysis gas pressure play crucial roles in acetylene formation. Appropriately abundant hydrogen, with a mole ratio of hydrogen to carbon about 1 or 2, and a relatively high pyrolysis gas pressure can enhance the acetylene concentration. In the experiment, a compromised project consisting of an appropriate hydrogen flow rate and a feasible high pyrolysis gas pressure needs to be carried out to increase the acetylene concentration from coal pyrolysis in the hydrogen plasma torch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.