Abstract
In order to improve the simulation accuracy of the temperature rise, reduce the operating temperature, and improve the insulation performance of the gas insulated switchgear (GIS) busbar, this paper numerically studied a 252 kV three-phase GIS busbar chamber based on multiphysics coupling method. Various factors affecting busbar electromagnetic loss are analyzed, and the busbar structure is optimized combined with the Taguchi method. Firstly, the loss computational results show that, both skin effect and proximity effect change the conductor current distribution, the skin effect increases the GIS loss by 18.59 W/m (12.2%), and the proximity effect has little effect on the loss. The additional heat loss caused by conductor temperature rise cannot be ignored (13.2%). Secondly, Taguchi performance statistics show that, the conductor thickness (δ) and center distance (d0) have the greatest impact on the maximum temperature and minimum gas breakdown margin of GIS busbar, respectively, with the contribution rate of 80.2% and 65.1%, respectively. Finally, the optimal design parameter combinations with lowest operating temperature and best insulation performance for GIS busbar chamber are obtained with Taguchi method, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.