Abstract

Corrosion of pressurized water reactors (PWR) in nuclear power plants can lead to serious safety hazards. This study aims to analyze the deposition of corrosion products using FLUENT software. Deposition models and thermal resistance models were developed, and the effects of deposits on the reactor’s thermal–hydraulic characteristics were evaluated. Additionally, the impact of various parameters on deposition and thermal–hydraulic characteristics was examined. Results show that deposits accumulate extensively in the inlet section of the fuel cladding, while appearing as spot deposits in the outlet section. For deposit thicknesses below 30 μm, the surface temperature of the cladding gradually increases. However, when the thickness exceeds 30 μm, the surface temperature rapidly rises. Furthermore, the study reveals that the deposition amount decreases with increasing inlet flow velocity, exhibits an upward trend with higher inlet temperature, and increases with a higher wall heat flux density. This research provides important insights for understanding core deposition and thermal–hydraulic characteristics in nuclear reactor systems. It offers valuable guidance for enhancing safety and operational efficiency in nuclear power plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.