Abstract

PurposeThis paper aims to explore the mechanism of the slip phenomenon at macro/micro scales, and analyze the effect of slip on fluid flow and heat transfer, to reduce drag and enhance heat transfer.Design/methodology/approachThe improved tangential momentum accommodation coefficient scheme incorporated with Navier’s slip model is introduced to the discrete unified gas kinetic scheme as a slip boundary condition. Numerical tests are simulated using the D2Q9 model with a code written in C++.FindingsVelocity contour with slip at high Re is similar to that without slip at low Re. For flow around a square cylinder, the drag is reduced effectively and the vortex shedding frequency is reduced. For flow around a delta wing, drag is reduced and lift is increased significantly. For Cu/water nanofluid in a channel with surface mounted blocks, drag can be reduced greatly by slip and the highest value of drag reduction (DR) (67.63%) can be obtained. The highest value of the increase in averaged Nu (11.78%) is obtained by slip at Re = 40 with volume fraction φ=0.01, which shows that super-hydrophobic surface can enhance heat transfer by slip.Originality/valueThe present study introduces and proposes an effective and superior method for the numerical simulation of fluid/nanofluid slip flow, which has active guidance meaning and applied value to the engineering practice of DR, heat transfer, flow control and performance improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.